人工智能基础课,通俗易懂的人工智能入门课

你将获得什么?

  • 6 大人工智能必备数学基础;
  • 15 个机器学习、深度学习核心知识点;
  • 11 个人工神经网络概念及实例;
  • 4 大人工智能应用场景。

课程介绍

当下,人工智能成了新时代的必修课,每个人都需要一些 AI 知识来升级自己,才能与时代同行。

人工智能的重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。

那学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?

在“人工智能基础课”专栏里,王天一教授将结合自己的积累与思考,和你分享他对人工智能的理解,用通俗易懂的语言从零开始教你掌握人工智能的基础知识,梳理出人工智能学习路径,为今后深耕人工智能相关领域打下坚实的基础。

专栏围绕人工智能基础的 7 大核心主题,分 7 个模块进行讲解:

  • 学习人工智能需要哪些必备的数学基础?
  • 机器学习有哪些学习方法?
  • 为什么人工神经网络如此流行?
  • 关于深度学习至少要掌握哪些内容?
  • 深度学习框架下的神经网络实例有哪些?
  • 深度学习之外的人工智能还有哪些重要研究?
  • 最经典的人工智能应用场景是怎样的?

课程目录

开篇词 (1讲)
开篇词 | 人工智能:新时代的必修课
数学基础 (7讲)
01 数学基础 | 九层之台,起于累土:线性代数
02 数学基础 | 月有阴晴圆缺,此事古难全:概率论
03 数学基础 | 窥一斑而知全豹:数理统计
04 数学基础 | 不畏浮云遮望眼:最优化方法
05 数学基础 | 万物皆数,信息亦然:信息论
06 数学基础 | 明日黄花迹难寻:形式逻辑
(课外辅导)数学基础 | 拓展阅读参考书
机器学习 (10讲)
07 机器学习 | 数山有路,学海无涯:机器学习概论
08 机器学习 | 简约而不简单:线性回归
09 机器学习 | 大道至简:朴素贝叶斯方法
10 机器学习 | 衍化至繁:逻辑回归
11 机器学习 | 步步为营,有章可循:决策树
12 机器学习 | 穷则变,变则通:支持向量机
13 机器学习 | 三个臭皮匠,赛过诸葛亮:集成学习
14 机器学习 | 物以类聚,人以群分:聚类分析
15 机器学习 | 好钢用在刀刃上:降维学习
(课外辅导)机器学习 | 拓展阅读参考书
人工神经网络 (7讲)
16 人工神经网络 | 道法自然,久藏玄冥:神经网络的生理学背景
17 人工神经网络 | 一个青年才俊的意外死亡:神经元与感知器
18 人工神经网络 | 左手信号,右手误差:多层感知器
19 人工神经网络 | 各人自扫门前雪:径向基函数神经网络
20 人工神经网络 | 看不见的手:自组织特征映射
21 人工神经网络 | 水无至清,人莫至察:模糊神经网络
(课外辅导)人工神经网络 | 拓展阅读参考书
深度学习 (7讲)
22 深度学习 | 空山鸣响,静水流深:深度学习概述
23 深度学习 | 前方有路,未来可期:深度前馈网络
24 深度学习 | 小树不修不直溜:深度学习中的正则化
25 深度学习 | 玉不琢不成器:深度学习中的优化
26 深度学习 | 空竹里的秘密:自编码器
27 深度学习 | 困知勉行者勇:深度强化学习
(课外辅导)深度学习 | 拓展阅读参考书
深度学习框架下的神经网络 (5讲)
28 深度学习框架下的神经网络 | 枯木逢春:深度信念网络
29 深度学习框架下的神经网络 | 见微知著:卷积神经网络
30 深度学习框架下的神经网络 | 昨日重现:循环神经网络
31 深度学习框架下的神经网络 | 左右互搏:生成式对抗网络
32 深度学习框架下的神经网络 | 三重门:长短期记忆网络
深度学习之外的人工智能 (4讲)
33 深度学习之外的人工智能 | 一图胜千言:概率图模型
34 深度学习之外的人工智能 | 乌合之众的逆袭:集群智能
35 深度学习之外的人工智能 | 授人以鱼不如授人以渔:迁移学习
36 深度学习之外的人工智能 | 滴水藏海:知识图谱
应用场景 (4讲)
37 应用场景 | 你是我的眼:计算机视觉
38 应用场景 | 嘿, Siri:语音处理
39 应用场景 | 心有灵犀一点通:对话系统
40 应用场景 | 数字巴别塔:机器翻译
加餐 (5讲)
课外谈 | “人工智能基础课”之二三闲话
推荐阅读 | 我与人工智能的故事
直播回顾 | 机器学习必备的数学基础
第2季回归 | 这次我们来聊聊机器学习
新书 | 《裂变:秒懂人工智能的基础课》
复习课 (7讲)
一键到达 | 数学基础复习课
一键到达 | 机器学习复习课
一键到达 | 人工神经网络复习课
一键到达 | 深度学习复习课
一键到达 | 深度学习框架下的神经网络复习课
一键到达 | 深度学习之外的人工智能复习课
一键到达 | 应用场景复习课
结束语 (2讲)
结课 | 溯洄从之,道阻且长
结课测试 | 这些人工智能的知识你都掌握了吗?

讲师介绍

王天一,毕业于北京邮电大学,获得工学博士学位,在读期间主要研究方向是连续变量量子通信理论与系统,主持并参与了多项国家级 / 省部级科研项目,以第一作者身份发表了 5 篇 SCI 论文。

目前在贵州大学大数据与信息工程学院担任副教授,主要研究方向是大数据与人工智能,研究内容包括以物联网为基础的大数据应用及神经网络与机器学习。 著有《人工智能革命》一书。

Like (0)
Previous 2022年1月14日 上午7:06
Next 2022年1月14日 上午7:13

相关推荐

发表回复

Please Login to Comment